Researchers at the California Institute of Technology have made an artificial neural network of DNA, creating a circuit of interacting molecules that can recall memories based on incomplete patterns, just as a brain can.
'The brain is incredible,' says Lulu Qian, a Caltech senior postdoctoral scholar in bioengineering and lead author on the paper that described the work, published in the July 21 issue of the journal Nature, and reported on ScienceDaily. 'It allows us to recognize patterns of events, form memories, make decisions, and take actions. So we asked, instead of having a physically connected network of neural cells, can a soup of interacting molecules exhibit brainlike behavior?'
The answer was yes.
Beyond technological challenges, engineering these systems could also provide indirect insight into the evolution of intelligence. 'Before the brain evolved, single-celled organisms were also capable of processing information, making decisions, and acting in response to their environment,' says Quian. The source of such complex behaviors must have been a network of molecules floating around in the cell. 'Perhaps the highly evolved brain and the limited form of intelligence seen in single cells share a similar computational model that's just programmed in different substrates.'
'Our paper can be interpreted as a simple demonstration of neural-computing principles at the molecular and intracellular levels,' says co-author Jehoshua Bruck. 'One possible interpretation is that perhaps these principles are universal in biological information processing.'
Which is what this blog has been saying for years.